Undergraduate NE Courses

COURSES IN NANOENGINEERING (NANO)

Not all courses are offered each quarter and/or year. Make sure to check the updated Tentative Teaching Schedule each year.
Note: Core courses are offered once a year. NanoEngineering Electives are not offered every year.

All students enrolled in NANO courses or admitted to the NANO major are required to meet prerequisite and performance standards, i.e., students may not enroll in any NANO courses or courses in another department which are required for the major prior to having satisfied prerequisite courses with a C– or better (the department does not consider D or F grades as adequate preparation for subsequent material. All courses except NANO 4 and NANO 199 must be taken for a letter grade. All NANO courses must have a grade of C- or above as a passing grade. P/NP will not be accepted). Additional details are given under the program outline, course descriptions, and admission procedures for the Jacobs School of Engineering in this catalog.

LOWER–DIVISION

NANO 4. Experience NanoEngineering (1) Introduction to NanoEngineering lab-based skills. Hands-on training and experimentation with nanofabrication techniques, integration, and analytical tools. This class is for NANO majors who are incoming first-year students, to be taken their first year. Prerequisites: Department approval required. (P/NP grading only; NANO 4 is mandatory).   

NANO 11. Introduction to NanoEngineering (4) (Note: NANO 11 replaced NANO 101)
Introduction to NanoEngineering, including fundamental scaling laws and an overview of nanomaterials synthesis, properties, and relevant technological applications with focus in the areas of nanomedicine, energy, and advanced materials. Prerequisites: NANO 4. 

NANO 15*. Engineering Computation Using Matlab (4) (Cross-listed with CENG 15) Introduction to the solution of engineering problems using computational methods. Formulating problem statements, selecting algorithms, writing computer programs, and analyzing output using MATLAB. Computational problems from NanoEngineering, chemical engineering, and materials science are introduced. The course requires no prior programming skills. Students may only receive credit for one of the following: NANO 15, NANO 15R, CENG 15, CENG 15R, or MAE 8.

*NANO 15, NANO 15R, and MAE 8 are not cross-listed courses. If students need to repeat NANO 15 or NANO 15R, students must retake the same numbered course, since they are not interchangeable.

NANO 15R*. Engineering Computation Using Matlab Online (4) (Cross-listed with CENG 15R) Introduction to solution of engineering problems using computational methods. Formulating problem statements, selecting algorithms, writing computer programs, and analyzing output using Matlab. Computational problems from NanoEngineering, chemical engineering, and materials science are introduced. This is a fully online, self-paced course that utilizes multi-platform instructional techniques (video, text, and instructional coding environments). The course requires no prior programming skills. Students may only receive credit for one of the following: NANO 15, NANO 15R, CENG 15, CENG 15R, or MAE 8.

*NANO 15, NANO 15R, and MAE 8 are not cross-listed courses. If students need to repeat NANO 15 or NANO 15R, students must retake the same numbered course, since they are not interchangeable.

NANO 20L. Introduction to Nanomaterials Synthesis Lab (1) Lab-based course to introduce the chemical synthesis of nanomaterials. Hands-on training in chemical synthesis and basic characterization tools. Program or materials fees may apply. 

UPPER–DIVISION

NANO 100L. Physical Properties of Materials Laboratory (4) Experimental investigation of physical properties of materials such as: thermal expansion coefficient, thermal conductivity, glass transitions in polymers, resonant vibrational response, longitudinal and shear acoustic wave speeds, Curie temperatures, UV-VIS absorption and reflection.  Prerequisites: NANO 108.

NANO 101. Introduction to NanoEngineering (4) 
(Note: NANO 101 is no longer available and has been replaced with NANO 11)
Introduction to Nanoengineering; nanoscale fabrication: nanolithography and self–assembly; characterization tools; nanomaterials and nanostructures: nanotubes, nanowires, nanoparticles, and nanocomposites; nanoscale and molecular electronics; nanotechnology in magnetic systems; nanotechnology in integrative systems; nanoscale optoelectronics; nanobiotechnology: biomimetic systems, nanomotors, nanofluidics, and nanomedicine. Prerequisites: NANO 4, CHEM 6B, PHYS 2B, MATH 20C, and CENG 15 or CENG 15R or NANO 15 or NANO 15R or MAE 8. Open to NANO majors only or by department approval. 

NANO 102. Foundations in NanoEngineering: Chemical Principles (4) Chemical and biochemical principles tailored to nanotechnologies. Chemical interactions, classical and statistical thermodynamics of small systems, diffusion, carbon-based nanomaterials, supramolecular chemistry, colloid and polymer chemistry, lipid vesicles, surface functionalization, catalysis, biomolecular interactions and signal pathways. Prerequisites: CHEM 6C. Restricted to NanoEngineering majors or by department approval. 

NANO 103. Foundations in NanoEngineering: Biochemical Principles (4) Principles of biochemistry tailored to nanotechnologies. The structure and function of biomolecules and their specific roles in molecular interactions and signal pathways. Detection methods at the micro and nano scales. Prerequisites: BILD 1 and CHEM 6C and NANO 11 (or NANO 101) and NANO 102. 

NANO 104. Foundations in NanoEngineering: Physical Principles (4) Introduction to quantum mechanics and nanoelectronics. Wave mechanics, the Schröedinger equation, free and confined electrons, band theory of solids. Nanosolids in 0D, 1D, and 2D. Application to nanoelectronic devices. Prerequisites: Math 20D and NANO 11 (or NANO 101). 

NANO 106*. Crystallography of Materials (4) Fundamentals of crystallography, and practice of methods to study material structure and symmetry. Curie symmetries. Tensors as mathematical description of material properties and symmetry restrictions. Introduction to diffraction methods, including X-ray, neutron and electron diffraction. Close-packed and other common structures of real-world materials. Derivative and superlattice structures. Prerequisites: MATH 20F or MATH 18. 

NANO 107*. Electronic Devices and Circuits for NanoEngineers (4) Overview of electrical devices and CMOS integrated circuits emphasizing fabrication processes, and scaling behavior. Design, and simulation of sub-micron CMOS circuits including amplifiers active filters digital logic, and memory circuits. Limitations of current technologies and possible impact of nanoelectronic technologies. Prerequisites: NANO 15, NANO 11, MATH 20B or MATH 20D, and PHYS 2B.

NANO 108. Materials Science and Engineering (4) Structure and control of materials: metals, ceramics, glasses, semiconductors, polymers to produce useful properties. Atomic structures. Defects in materials, phase diagrams, micro structural control. Mechanical, rheological, electrical, optical and magnetic properties discussed. Time temperature transformation diagrams. Diffusion. Scale dependent material properties. Prerequisites: Restricted to NanoEngineering majors only; upper division standing. 

NANO 110. Molecular Modeling of Nanoscale Systems (4) Principles and applications of molecular modeling and simulations towards nanoengineering. Topics covered include molecular mechanics, energy minimization, statistical mechanics, molecular dynamics simulations, and Monte Carlo simulations. Students will get hands-on training in running simulations and analyzing simulation results. Prerequisites: Math 18, NANO 102, NANO 104, and NANO 15 or CENG 15 or MAE 8. Restricted to NanoEngineering majors only or by department approval. 

NANO 111. Characterization of NanoEngineering Systems (4) Fundamentals and hands-on practice of methods to image, measure and analyze materials and devices that are structured on the nanometer scale. Optical and electron microscopy; scanning probe methods; photon–, ion–, electron–probe methods, spectroscopic, magnetic, electrochemical and thermal methods. Prerequisites: NANO 102.

NANO 112. Synthesis and Fabrication of NanoEngineering Systems (4) Introduction to methods for fabricating materials and devices in NanoEngineering. Nano–particle, –vesicle, –tube and –wire synthesis. Top–down methods including chemical vapor deposition, conventional and advanced lithography, doping and etching. Bottom–up methods including self–assembly. Integration of heterogeneous structures into functioning devices. Prerequisites: NANO 102 and NANO 104 (NANO 112 is a core course for NE majors and cannot be replaced with NANO 239).

NANO 114. Probability and Statistical Methods for Engineers (4) (Cross-listed with CENG 114)  Probability theory, conditional probability, Bayes theorem, discrete random variables, continuous random variables, expectation and variance, central limit theorem, graphical and numerical presentation of data, least squares estimation and regression, confidence intervals, testing hypotheses. Students may not receive credit for both NANO 114 and CENG 114. Prerequisites: MATH 18, and NANO 15 or CENG 15 or MAE 8.

NANO 115L. NanoEngineering Laboratory (4) Laboratory experiments in the design, production, and integration of nanoscale components. Emphasis will be on solution phase synthesis, microfabrication tools, analytical characterization, and nanodevice fabrication. Program or materials fee may apply. Prerequisite: NANO 111.

NANO 117. Multiscale Transport (4) Introduction to basic transport phenomena relevant to nanoscale and general materials systems, including engineering units and pressure, heat conduction and convection, momentum transport and laminar flow, and diffusion in solids and fluids. Prerequisites: Upper Division Standing.

NANO 119. NanoEngineering System Design Seminar (1) Seminar series focused on strategies in system design and solving engineering problems. Prerequisite: NANO 115L.

NANO 120A. NanoEngineering System Design I (4) Principles of product design and the design process. Application and integration of technologies in the design and production of nanoscale components. Engineering economics. Initiation of team design projects to be completed in NANO 120B. Prerequisites: NANO 110.

NANO 120B. NanoEngineering System Design II (4) Principles of product quality assurance in design and production. Professional ethics. Safety and design for the environment. Culmination of team design projects initiated in NANO 120A with a working prototype designed for a real engineering application. Prerequisites: NANO 120A.

NANO 134. Polymeric Materials (4) (Cross-listed with CENG 134 and CHEM 134) Foundations of polymeric materials. Topics: structure of polymers; mechanisms of polymer synthesis; characterization methods using calorimetric, mechanical, rheological, and X-ray-based techniques; and electronic, mechanical, and thermodynamic properties. Special classes of polymers: engineering plastics, semiconducting polymers, photoresists, and polymers for medicine. Students may only receive credit for one of the following: CENG 134, CHEM 134, or NANO 134. Prerequisites: CHEM 6C and PHYS 2C.

NANO 141A. Engineering Mechanics I: Analysis of Equilibrium (4) Newton's laws. Concepts of force and moment vector. Free body diagrams. Internal and external forces. Equilibrium of concurrent, coplanar, and three-dimensional system of forces. Equilibrium analysis of structural systems, including beams, trusses, and frames. Equilibrium problems with friction. Prerequisites: MATH 20C and PHYS 2A.

NANO 141B:  Engineering Mechanics II: Analysis of Motion (4)
Newton's laws of motion. Kinematic and kinetic description of particle motion. Angular momentum. Energy and work principles. Motion of the system of interconnected particles.  Mass center. Degrees of freedom. Equations of planar motion of rigid bodies. Energy methods. Lagrange's equations of motion. Introduction to vibration. Free and forced vibrations of a single degree of freedom system. Undamped and damped vibrations. Application to NanoEngineering problems.  Prerequisites: MATH 20D and NANO 141A.

NANO 146. Nanoscale Optical Microscopy and Spectroscopy (4) Fundamentals in optical imaging and spectroscopy at the nanometer scale. Diffraction–limited techniques, near–field methods, multi–photon imaging and spectroscopy, Raman techniques, Plasmon–enhanced methods, scan–probe techniques, novel sub–diffraction–limit imaging techniques, and energy transfer methods. Prerequisites: NANO 104.

NANO 148. Thermodynamics of Materials (4) Fundamental laws of thermodynamics for simple substances; application to flow processes and to non–reacting mixtures; statistical thermodynamics of ideal gases and crystalline solids; chemical and materials thermodynamics; multiphase and multicomponent equilibria in reacting systems; electrochemistry. Prerequisites: Upper Division Standing.

NANO 150. Mechanics of Nanomaterials (4) Introduction to mechanics of rigid and deformable bodies.  Continuum and atomistic models, interatomic forces and intermolecular interactions.  Nanomechanics, material defects, elasticity, plasticity, creep, and fracture. Composite materials, nanomaterials, biological materials. Prerequisites: NANO 108.

NANO 156. Modern Concepts in Nanotechnology (4) This course offers a worm's eye perspective on recent developments on nanomaterials through case studies building on basic principles of synthesis techniques, processing, microstructural control and unique physical properties of materials in nanoscale dimensions. Particular focus will be given to physical properties and technological applications of nanowires, quantum dots, and thin films. Students may not receive credit for both NANO 156 and MAE 166. Prerequisites: Upper Division Standing.

NANO 158. Phase Transformations and Kinetics (4)  Materials and microstructures changes. Understanding of diffusion to enable changes in the chemical distribution and microstructure of materials, rates of diffusion. Phase transformations, effects of temperature and driving force on transformations and microstructure. Prerequisites: NANO 108 and NANO 148.

NANO 158L. Materials Processing Laboratory (4)  Metal casting processes, solidification, deformation processing, thermal processing: solutionizing, aging, and tempering, joining processes such as welding and brazing.  The effect of processing route on microstructure and its effect on mechanical and physical properties will be explored.  Prerequisites: NANO 158. Priority enrollment given to NanoEngineering majors.

NANO 159. Electrochemistry: Fundamentals and Applications (4) Introduce fundamentals of electrochemical processes and electrode reactions to the principles of electrochemical techniques, instrumental requirements, and their diverse real-life applications in the energy, environmental, and diagnostics areas. Prerequisites: CHEM 6A or 6AH, CHEM 6B or 6BH, CHEM 6C or 6CH, CHEM 7L or 7LM.

NANO 161. Material Selection in Engineering (4)  Selection of materials for engineering systems, based on constitutive analyses of functional requirements and material properties. The role and implications of processing on material selection. Optimizing material selection in a quantitative methodology. Prerequisites: NANO 108. Priority enrollment given to NanoEngineering majors. Open to NANO majors only or by department approval.

NANO 164. Advanced Micro– & Nano– Materials for Energy Storage and Conversion (4) Materials for energy storage and conversion in existing and future power systems, including fuel cells and batteries, photovoltaic cells, thermoelectric cell and hybrids. Prerequisites: NANO 11 and NANO 102; Upper Division Standing.

NANO 168. Electrical, Dielectric, and Magnetic Properties of Engineering Materials (4) Introduction to physical principles of electrical, dielectric and magnetic properties. Semiconductors, control of defects, thin film and nano–crystal growth, electronic and optoelectronic devices. Processing–microstructure–property relations of dielectric materials, including piezoelectric, pyroelectric and ferroelectric and magnetic materials. Prerequisites: NANO 102 and NANO 104.

NANO 174. Mechanical Behavior of Materials (4) Microscopic and macroscopic aspects of the mechanical behavior of engineering materials, with emphasis on recent development in materials characterization by mechanical methods. The fundamental aspects of plasticity in engineering materials, strengthening mechanisms and mechanical failure modes of materials systems. Prerequisites: NANO 108.

NANO 174L. Mechanical Behavior Laboratory (4) Experimental investigation of mechanical behavior of engineering materials. Laboratory exercises emphasize the fundamental relationship between microstructure and mechanical properties, and the evolution of the microstructure as a consequence of rate process. Prerequisites: NANO 174.

NANO 175. NanoEngineering in Medicine (4) (Cross-listed with CENG 175) Introduction to nanomedicine; topics include: nanoscale material, biological systems vs. synthetic vs. bio-inspired systems; drug and gene delivery, molecular imaging, vaccines, immunoengineering, pharmacology, clinical application in cancer, cardiovascular disease, infectious disease, immune diseases, genetic disorders, skin diseases, and regenerative medicine. Students may not receive credit for both NANO 175 and CENG 175. Prerequisites: Upper Division Standing. 

NANO 181. Data Science in Materials Science (4) Comprehensive introduction into the application of data science to materials science. Introduction to broad array of machine learning techniques (e.g., supervised, unsupervised, etc.) and applications (e.g., regression, dimensionality reduction, classification), with a focus on practical examples in materials science. Prerequisites: NANO 114 or CENG 114

NANO 199. Independent Study for Undergraduates (4 & 4) Research project as equivalent to a "senior thesis" can be approved for two NanoEngineering Elective courses (eight units total). This course is taken as an elective on a P/NP basis. It must be done in consecutive quarters and the student must find a faculty member who will oversee the research project. Eligible students must have completed at least 90 units and must have a UC San Diego cumulative GPA of 3.0 or better. Detailed policy and procedures may be obtained from the Student Affairs Office. Prerequisites: Consent of instructor. Click here to learn how to enroll in NANO 199.